

Secure Web Server
Workshop

Xavier Belanger
Wilmington IT Security

Discussion Group
May 24 2025

Welcome!
● Thank you for attending today.

By the end of this workshop,
you should have a better
understanding on how to secure
a web server running on a Linux
system in the cloud.

● All steps are documented, and
instructions will be provided as
needed.

Who am I?
● Xavier Belanger
● Formerly system administrator,

network administrator, currently
working as an IT security architect.

● Ran its first web server in 1999.

Ice breakers
● Hello, my name is ____________
● I’m a ______________
● And my hobby is ___________

Scope
● This workshop is focused on

securing a web server and
the hosting operating system.

● Coding practices, use of databases
and similar topics are not covered,
due to time constraints.

Common rules
● Do not hesitate to ask questions,

make comments or request
to review a specific point in detail.

● Feel free to share your
experiences, discuss alternatives
and bring your point of view.

Our lab environment

Your
personal

laptop

Management server
mgmt.ilm-it-security.org

Your own server in the cloud
server.ilm-it-security.org

Internet

Additional tools
● Few additional scripts are provided for this workshop

(not part of the regular Ubuntu distribution).
● mkbackup.sh
● mkwebsite-http.sh, mkwebsite-https.sh
● LE-certs-cleanup.sh, LE-certs-copy.sh,
LE-certs-renew.sh

● start-ssh-agent.sh
● nftables.conf, webtraffic-add.sh,
webtraffic-delete.sh, check-firewall.sh,
check-logs.sh, reset-firewall.sh

Accessing your new server
● A Linux server has been created for

each participant in the Linode cloud
environment.

● Your first step is to confirm access
to this server and make sure that
you can fully manage it.

First SSH connections
● ssh username@mgmt.ilm-it-security.org
● ssh username@server.ilm-it-
security.org

● You will get a warning at your very first connection
to confirm that you’re trying to reach each server.

● At this point you can choose to connect via
the management server to access your personal
server or not. The management server will be
used to run tools that you may not have on
your personal computer.

Validating your account
● Check the account that

you are using:
● whoami
● Check that you have administrator

level access:
● sudo whoami

Confirming the server name
● In order to host a web site, your server

needs a name registered in DNS
(Domain Name System).

● For this workshop the DNS configuration
has already been set for you.

● Each server is set with two names:
– server.ilm-it-security.org
– www.server.ilm-it-security.org

IP and DNS commands
● ip addr show
● dig A server.ilm-it-security.org
● dig A www.server.ilm-it-security.org
● dig AAAA server.ilm-it-security.org
● dig AAAA www.server.ilm-it-
security.org

● dig -x <IP address> (public IPv4)

Updating the system
● By default any new server will requires updates;

you will need to complete this before making any
other change.

● sudo apt update
● sudo apt list --upgradable
● sudo apt upgrade -y
● sudo reboot
● Note: sometimes a second round of updates may

be needed.

Keeping the system up-to-date

● When using your server for production
on a permanent basis, make sure
to schedule maintenance windows
to perform system updates and
changes on regular intervals.

● A common practice is to have
maintenance operations scheduled
once a month.

Installing your web server
● For this workshop we will be using Apache HTTPD

(commonly known as ‘Apache’). It is one of
the most popular open-source web server
available.

● Apache HTTPD provides a lot of features, with
a modular configuration. Plenty of documentation
and resources are available to use it.

● sudo apt install apache2 -y
● sudo systemctl status apache2

Apache HTTPD on Ubuntu
● Ubuntu Linux being based on Debian it inherit

of the same approach to configure Apache
HTTPD.

● The configuration is split in various files,
under the /etc/apache2 directory.
Specific commands are also available
(not part of Apache HTTPD proper).

● You will need to adjust the instructions
provided here if you are working on a Linux
distribution that is not Debian-based.

Creating a website
● You need to create a basic configuration

to host your website; we will also need
some placeholder content at the
beginning.

● To streamline this process we will be
using a script to generate most of this
automatically.

● sudo mkwebsite-http.sh
server.ilm-it-security.org

Activating a website
● Your web site configuration must

be enabled, and the default one
disabled.

● sudo a2ensite server-http
● sudo a2dissite 000-default
● sudo systemctl reload apache2

Validating your website
● Now that your website is online,

you can run various tools to confirm
how it is working.

● We will be using a combination of
local tools and online services.

● You can also check the logs for
the web server and the website.

Validating with local tools
● nmap <IPv4 address>
● nmap -6 <IPv6 address>
● nmap server.ilm-it-security.org
● wget server.ilm-it-security.org
● curl -I server.ilm-it-security.org
● Your web browser of choice

Validating with online tools
● https://www.hardenize.com/

● https://internet.nl/

● https://securityheaders.com/

● https://radar.cloudflare.com/scan

● https://web-check.xyz/

Checking the logs
● Various log files are available under
/var/log/apache2:

● access.log
● error.log
● server.ilm-it-security.org-http-
access.log

● server.ilm-it-security.org-http-error.log
● Use the ‘cat’ or ‘tail’ commands to review the files.

Do not use a regular text editor.

Securing the web server
● The very first step to improve

the security of your web site is
to enable HTTPS, to encrypt
network traffic.

● This require to obtain a digital
security certificate and
to reconfigure Apache HTTPD.

Obtaining a security certificate

● We will be using the Let’s Encrypt free
service to obtain a security certificate.

● A dedicated tool, named Dehydrated,
will allow us to automate the request
and renewal for that certificate.

● sudo apt install dehydrated -y
● sudo apt install dehydrated-apache2 -y

Configuring Dehydrated
● Edit /etc/dehydrated/domains.txt
● Add one line with the following content:
● www.server.ilm-it-security.org server.ilm-it-
security.org

● sudo /usr/bin/dehydrated --register --accept-terms
● sudo LE-certs-renew.sh
● sudo mkdir /etc/apache2/sites-certificates
● sudo chmod 750 /etc/apache2/sites-certificates
● sudo LE-certs-copy.sh
● Do not restart Apache HTTPD yet!

Enabling HTTPS
● Apache HTTPD will require to have

a module enabled to work with
HTTPS.

● A new configuration is required
for our website. Once again,
we will be using a script
to generate the required file.

Configuring Apache HTTPD
● sudo a2enmod ssl
● sudo a2enmod rewrite
● sudo mkwebsite-https.sh
server.ilm-it-security.org

● sudo a2ensite server-https
● sudo systemctl restart
apache2

Validating your website (again)

● Since we have now adjusted
our configuration, we will be running
the same tools than before to confirm
that all changes have been deployed
successfully.

● nmap -p T:443 server.ilm-it-
security.org --script=ssl-cert

● nmap -p T:443 server.ilm-it-
security.org --script=ssl-enum-
ciphers

More TLS security
● Note: this section is optional for the workshop
● In itself, using TLS and a security certificate is

not sufficient. Some fine tuning is needed.
● You can use the Mozilla SSL Configuration

Generator to get more insight.
● https://ssl-config.mozilla.org/
● Server version: apache2 -v
● OpenSSL version: openssl version

More security configuration

Additional configuration can be added to
Apache HTTPD to make it more secure
and provide additional features:

– Automatic redirection from HTTP
to HTTPS

– Enabling HTTP/2
– Define security headers

HTTP to HTTPS Redirection
● mod_alias must be enabled
● sudo a2enmod alias
● The “http” configuration file for your website

already contains the necessary item; it just
need to be activated.

● Redirect permanent /
https://www.server.ilm-it-
security.org/

● sudo systemctl reload apache2

Enabling HTTP/2
● Once again, we need a module

for this.
● sudo a2enmod http2
● sudo systemctl restart apache2

Updating existing HTTP headers

● In the /etc/apache2/conf-
available/security.conf file:

● Update ServerTokens from OS to Prod
● Update ServerSignature from On to Off
● sudo systemctl reload apache2

Adding new HTTP headers
● Yes, we will need another module.
● sudo a2enmod headers
● Set the following headers in the /etc/apache2/conf-
available/security.conf file:

● Header set X-Frame-Options: "DENY"
● Header set Referrer-Policy: "same-origin"
● Header set X-Content-Type-Options: "nosniff"
● Header set Content-Security-Policy "default-src
'self' 'unsafe-inline'"

● sudo systemctl restart apache2

Validating your website (still)

● Because changes have been
made, we need to validate that
our website is working properly
with the new and improved
configuration.

● curl -I --http2 https://server.ilm-
it-security.org

Apache HTTPD log files
● Note: this section is optional for the workshop
● By default, log files will be kept for 14 days, rotated

every day, and compressed after the first one.
● If you like to change that behavior

you will need to adjust the /etc/logrotate.d/
apache2 file. And restart the logrotate service.

● sudo systemctl restart logrotate

Enabling delegated access
● You may be in a situation where

you would need to provide access
to additional people to manage
the website, without granting full
access to the server.

● This will require to have specific user
accounts, group and configure
policies and permissions.

Adding a group
● Create a group, then include all users

managing the web site to that group,
plus the Apache user itself.

● sudo groupadd webmasters
● sudo usermod -a -G webmasters user
● If connected, the user will need to reconnect

to gain the new group membership.

Applying new permissions
● Now that we have a dedicated group,

we can use that group for setting permissions
on all the web content.

● sudo chgrp -R webmasters
/var/www/server

● sudo chmod g+s /var/www/server
● This could also potentially be used

for granting access to configuration files
and logs.

Securing SSH access
● Since SSH is used to manage

your server this would also require
some attention to improve
the default configuration.

● This will additionally allow more
automation and ease of use.

SSH hardening
● Edit the /etc/ssh/sshd_config file
● PermitRootLogin no
● PermitEmptyPasswords no
● PubKeyAuthentication yes
● AllowGroups <group>
● sudo systemctl restart ssh

Warning
● The next steps depends on

the application that you are using on
your personal laptop, especially your
SSH client. The required configuration
and tools may differ greatly.

● You may lose access to your server
if using an incorrect configuration.

Using SSH keys
● Initially using SSH keys requires

a little bit of setup and practice
and will make things more easier
and secure on the long run.

● In a nutshell:
– Create a SSH key and push it to the server
– Confirm that your access is working
– Disable password-based access

Managing your SSH key
● Generate the key: ssh-keygen
● Copy the key to the server: ssh-copy-
id or scp

● Load the key in a SSH agent: ssh-
agent and ssh-add (or use the custom
start-ssh-agent.sh script)

● On MS Windows, you may have a better
user experience using PuTTY.

Using a firewall
● On top of the network filtering options

that may be available from the cloud
hosting service you can use some
firewall rules on the system itself.

● This provides an additional layer
of security, with more granular rules
and better control.

Our firewall policy
● Allow incoming HTTP (TCP/80) and

HTTPS (TCP/443) from anywhere on
the Internet.

● Allow incoming SSH (TCP/22) only from
the management server.

● Allow outgoing basic services (NTP –
UDP/123, DNS UDP53 & TCP/53).
HTTP and HTTPS will not be enabled by
default, only on demand.

Setting your own firewall
● Ubuntu provide ufw (Uncomplicated Firewall)

by default for network filtering. It is based on
nftables.

● To benefit from some advanced functions
we will be disabling ufw and using directly
nftables.

● sudo systemctl stop ufw
● sudo systemctl disable ufw
● sudo systemctl enable nftables

Warning
● You may lose access to your server

if using an incorrect configuration.
● You can schedule a task

to automatically reset your firewall
when testing and fine-tuning
your access rules.

Automatic firewall reset
● Use a cronjob to reset your firewall rules

at a set time before applying the new ones
● sudo crontab -e
● <mm> <hh> * * *
/usr/local/sbin/reset-firewall.sh

● Don’t forget to disable that rule once things
are working properly!

Configuring nftables
● We will be using an already

prepared configuration file
to build our network filtering rules.

● Copy the configuration file to
/etc/nftables.conf

● sudo systemctl restart nftables

That’s the end!
● Thanks again for attending this

workshop today!
● Please share your questions,

comments, feedback.
● What could have been done better?

What did you like the most? Any
other suggestions?

	Secure Web Server Workshop
	Welcome!
	Who am I?
	Ice breakers
	Scope
	Common rules
	Our lab environment
	Additional tools
	Accessing your new server
	First SSH connections
	Validating your account
	Confirming the server name
	IP and DNS commands
	Updating the system
	Keeping the system up-to-date
	Installing your web server
	Apache HTTPD on Ubuntu
	Creating a website
	Activating a website
	Validating your website
	Validating with local tools
	Validating with online tools
	Checking the logs
	Securing the web server
	Obtaining a security certificate
	Configuring Dehydrated
	Enabling HTTPS
	Configuring Apache HTTPD
	Validating your website (again)
	More TLS security
	More security configuration
	HTTP to HTTPS Redirection
	Enabling HTTP/2
	Updating existing HTTP headers
	Adding new HTTP headers
	Validating your website (still)
	Apache HTTPD log files
	Enabling delegated access
	Adding a group
	Applying new permissions
	Securing SSH access
	SSH hardening
	Warning - SSH
	Using SSH keys
	Managing your SSH key
	Using a firewall
	Our firewall policy
	Setting your own firewall
	Warning - Firewall
	Automatic firewall reset
	Configuring nftables
	That's the end!

